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A B S T R A C T   

Purpose: To test the feasibility of using quantitative transport mapping (QTM) method, which is based on the 
inversion of transport equation using spatial deconvolution without any arterial input function, for automatically 
postprocessing dynamic contrast enhanced MRI (DCE-MRI) to differentiate malignant and benign breast tumors. 
Materials and methods: Breast DCE-MRI data with biopsy confirmed malignant (n = 13) and benign tumors (n =
13) was used to assess QTM velocity (|u|) and diffusion coefficient (D), volume transfer constant (Ktrans), volume 
fraction of extravascular extracellular space (Ve) from kinetics method, and traditional enhancement curve 
characteristics (ECC: amplitude A, wash-in rate α, wash-out rate β). A Mann-Whitney U test and receiver oper-
ating characteristic curve (ROC) analysis were performed to assess the diagnostic performance of these pa-
rameters for distinguishing between benign and malignant tumors. 
Results: Between malignant and benign tumors, there was a significant difference in |u| and Ktrans, (p = 0.0066, 
0.0274, respectively), but not in D, Ve, A, α and β (p = 0.1119, 0.2382, 0.4418,0.2592 and 0.9591, respectively). 
ROC area-under-the-curve was 0.82, 0.75 (95% confidence level 0.60–0.95, 0.51–0.90) for |u| and Ktrans, 
respectively. 
Conclusion: QTM postprocesses DCE-MRI automatically through deconvolution in space and time to solve the 
inverse problem of the transport equation. Comparing with traditional kinetics method and ECC, QTM method 
showed better diagnostic accuracy in differentiating benign from malignant breast tumors in this study.   

1. Introduction 

Perfusion quantification is based on modeling a tracer transport 
through tissue captured in time-resolved imaging, such as dynamic 
contrast enhanced (DCE) MRI, and allows quantitative measurements of 
vascularity associated with tissue pathophysiology and is highly desired 
in clinical practice. Traditional tracer kinetics modeling has been used 
for perfusion quantification, which is based on Kety’s eq. [1] with Tofts’ 
generalization [2] by relating the temporal change in tracer concen-
tration to an arterial input function (AIF) for each voxel. Since AIF at 
each voxel is not measurable in practice, a single global AIF is assumed 
to supply all voxels, which is known to have errors associated with 

voxel-level deviations from the global AIF [3]. A voxel specific AIF delay 
to each voxel may be estimated as an additional parameter in fitting 
DCE-MRI data [4–6], but estimating AIF dispersion at each voxel is very 
challenging [3,4,7]. Perfusion quantification from DCE-MRI in practice 
varies substantially depending on how AIF is obtained [8–10]: a manual 
selection is operator dependent [3,9,11] while automated methods 
dependent on a variety of assumptions [12,13]. Consequently, AIF re-
mains an unsolved problem for traditional tracer kinetics approach [3], 
and current BI-RADS and PI-RADS instead use semi-quantitative tem-
poral characterization of enhancement curves to analyze tumor regions 
of interest [14,15]. 

To address the AIF problem in the traditional kinetics modeling of 
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tracer kinetics, recently a new method has been proposed to model the 
contrast agent concentration change in space and time according to the 
transport equation which obtains spatial and temporal derivatives of the 
concentration and do not require the selection of an AIF [16]. A blood 
flow velocity can be calculated by inverting the transport equation in a 
fully automated manner [17,18], which is termed as quantitative 
transport mapping (QTM) [19,20], in a fully automated manner without 
any AIF input. Using computational fluid mechanics simulation to 
validate quantitative tissue perfusion, QTM is shown to be substantially 
more accurate than traditional kinetics approach for kidney perfusion 
quantification from time-resolved (multi-delay) 3D arterial spin labeling 
MRI data [20]. 

In this work, we investigate the use of QTM for postprocessing time- 
resolved 3D dynamic contrast enhanced (DCE) MRI of breast tumors and 

compare QTM with traditional kinetics method and enhancement curve 
characterization (ECC). The lack of well-established breast tumor 
vasculature makes it difficult to use computational fluid mechanics 
simulation for quantitative perfusion validation. Instead, breast biopsy 
pathology in characterizing tumor malignancy is available in clinical 
practice and can be used to evaluate the performances of various 
quantitative perfusion postprocessing methods in differentiating benign 
from malignant breast tumors. Accordingly, we report here the diag-
nostic performance of QTM, traditional kinetics method and ECC for 
assessing breast tumor malignancy. 

2. Methods 

2.1. QTM, traditional kinetics method and enhancement curve for 
postprocessing DCE MRI 

In quantitative transport mapping, tracer concentration profile is 
modeled by a transport equation [16,20]: 

− ∇∙c(r, t)u(r)+∇∙D(r)∇c(r, t) = ∂tc(r, t). (1) 

Here ∂t is the time derivative, ∇ = (∂x,∂y,∂z) the gradient operator, c 
(r, t) the tracer concentration scalar field at a voxel with index r = (rx, ry, 
rz) in a volume of (Nx, Ny,Nz) resolution along (x,y,z) axis, and time 
index t ∈ {1,2,…Nt − 1} the time index with Nt as the number of time 
frames. u(r) = (ux(r),uy(r),uz(r)) is an average velocity vector field, and 
D(r) the diffusion coefficient scalar field [16]. Both time derivative and 
gradient operator are difference operations in the discretized 4D 
spacetime-resolved image space. Eq.1 is a linear equation system for 
velocity and diffusion that is solved as an optimization problem with L1 
total variation regularization as in a recent QTM study with the regu-
larization parameters λ = 10− 3 and μ = 10− 5 chosen according to the L- 
curve method [20]: 

Table 1 
Patient information in our study.   

Benign cases Malignant cases 

Age 51.23 ± 13.00 yrs 63.38 ± 11.14 yrs 
Lesion size(largest 

diameter) 
1.57 ± 1.39 cm 1.20 ± 0.45 cm 

Histopathology 13 benign 5 DCIS; 
4 IDC; 

1 invasive ductal carcinoma; 
1 invasive lobular carcinoma; 
1 invasive tubular carcinoma; 

1 microinvasive mammary 
carcinoma 

Lesion Type 8 NME; 4 mass; 1 
focus 

2 NME; 7 mass; 2 focus 

Initial BIRADS 8 grade 4; 2 grade 4A; 
3 grade 4B 

2 grade 4; 1 grade 4A; 3 grade 
4B; 2 grade 4C; 

5 grade 5;  

Fig. 1. Breast tumor DCE MRI and QTM velocity in an axial section demonstrating carcinoma in a 70 years old patient with biopsy proven malignant lesion. a) post 
Gd T1 weighted image showing the tumor (red arrow). b) QTM |u| map, and c) vector field map for the lesion, and d) QTM D map. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web version of this article.) 
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u,D = argmin
u,D

∑Nt − 1

t=1
‖∂tc +∇∙cu − ∇∙D∇c‖2

2 + λ‖∇u‖1 + μ‖∇D‖1. (2) 

In traditional kinetics (extended Tofts’ model), the tracer concen-
tration profile is modeled by [2]: 

∂tc(r, t) = Ktrans(r)
[

ca(t) −
1

Ve(r)
c(r, t)

]

, (3)  

where ca(t) is the global AIF, Ktrans is volume transfer constant, Ve(r) is 
the volume fraction of extravascular extracellular space (EES). Eq.3 is a 
linear equation system for Ktrans and kep = Ktrans

Ve
, but is nonlinear to τ. A 

voxel wise non-linear least square method is used to solved for kinetic 
parameters and traveling delay τ of AIF with the regularization param-
eters λ = μ =10− 3 chosen according to the L-curve method [6,21,22]: 

K trans,kep,τ= argmin
Ktrans ,kep ,τ

∑Nt − 1

t=1

⃦
⃦∂tc− Ktransca(t− τ)+kepc

⃦
⃦2

2+λ‖∇Ktrans‖1+μ
⃦
⃦∇kep

⃦
⃦1

(4) 

In traditional semi-quantitative tissue enhancement curve charac-
terization, the tracer concentration in the tumor ROI at each time point 
is modeled by [23], 

ΔS(t) =
S(t) − S(0)

S(0)
= A(1 − e− αt)e− βt, (5)  

where A is the enhancement amplitude, α is the wash in rate and β the 
wash out rate. The Levenberg–Marquardt algorithm is used to perform 
the nonlinear curve fitting: 

A,α, β = argmin
A,α,β

∑Nt − 1

t=1

⃒
⃒ΔS(t) − A(1 − e− αt)e− βt

⃒
⃒2

2. (6)  

2.2. Clinical data 

The retrospective analysis of DCE-MRI data in this study was 
approved by the Institutional Review Board and was HIPAA compliant. 
We enrolled 26 consecutive female patients, who had 1) undergone MRI 
of the mammary glands for suspicious lesions on mammography/ul-
trasound, 2) DCE-MRI as part of their routine clinical MRI protocol on a 
3 T MRI system (Magnetom Skyra, Siemens), and 3) biopsy. 30 lesions 
were specified, and for the patients with multiple lesions, the lesion with 
the largest size was included. Detailed patient and lesion information are 
shown in Table 1. 

All patients were imaged between 06/14/2019 and 01/18/2020 
using an 8-channel breast coil to acquire DCE-MRI immediately after the 
start of contrast injection for 5 phases. The temporal resolution is 15.4 s 
per frame and the total scan time was 77 s. The gadolinium-based 
contrast agent (gadobutrol; Bayer Healthcare Pharmaceuticals Inc., 
Whippany, NJ) was administered at 2 ml/s (dose = 0.1 mmol/kg body 
weight), followed by 40 ml saline flush at 2 ml/s. The DCE-MRI 

Fig. 2. Comparison of QTM method and kinetics method on a malignant lesion. This is a 53 years old patient with biopsy proven benign lesion. a) post-Gd T1 
weighted image, b) QTM |u| map, c) Ktrans and d) Ve map using internal mammary (IM) AIF. 
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acquisition parameters were: TR/TE = 3.95/1.7 msec, flip angle = 10◦, 
in-plane spatial resolution = 0.71 mm, thickness = 1.8 mm, axial 
orientation [24]. 

For each case, an experienced radiologist selected an AIF by drawing 
an ROI on the internal mammary artery. The same radiologist, blinded 
to the diagnosis, manually segmented regions of interest (ROI) 
comprised of the whole tumor volume based on the enhanced area in 
DCE image for analysis. The velocity amplitude |u|, diffusion coefficient 
D, Ktrans and Ve were averaged over these ROIs. 

2.3. Statistical analysis 

Using the R Statistical Software (Foundation for Statistical 
Computing, Vienna, Austria), a Mann-Whitney U test was performed 
comparing ROI values between benign and malignant tumors for |u|, D, 
Ktrans, Ve, A, α and β. P-values at or below 0.05 were considered to 
indicate statistical significance. A receiver operating characteristic curve 
(ROC) analysis was performed to investigate the diagnostic performance 
of all parameters for distinguishing between benign and malignant 
breast tumors. All reconstructions were performed on a computer using 
an Intel i7-8700K 6-core CPU with 64GB memory. 

3. Results 

Fig. 1 shows the velocity amplitude and direction obtained by QTM 
from DCE-MRI images of a malignant breast lesion. The lesion was well 
visualized on QTM velocity map (Fig. 1b) and diffusion map (Fig. 1d). 
The QTM velocity vector map (Fig. 1c) showed flow into and out of the 
lesion. The reconstructed velocity and diffusion coefficient at the lesion 
ROI were 0.47 ± 0.25 mm/s and 0.48 ± 0.46 mm2/s, respectively. 

Figs. 2 and 3 illustrate example maps of QTM velocity |u|,Ktrans and 
Ve for malignant and benign lesions. The two lesions showed similar 
enhancement on T1 weighted images of DCE MRI (Figs. 2a & 3a). The 

benign lesion showed a lower QTM velocity (Fig. 3b) compared to the 
malignant lesion (Fig. 2b). Corresponding AIFs, tumor ROI enhancement 
and fitted enhancement curves are shown in Fig. 4. 

The diagnostic performances of the QTM, kinetics method and ECC 
parameters are summarized Table 2 and illustrated in Fig. 5. A statisti-
cally significant difference between malignant and benign lesions was 
found for QTM velocity |u| (0.45 ± 0.15 vs 0.29 ± 0.11 mm/s, p =
0.0066), Ktrans (1.18 ± 0.49 vs 0.74 ± 0.36/min, p = 0.0274). A statis-
tically significant difference was absent in QTM diffusion D (0.30 ± 0.12 
vs 0.21 ± 0.09 mm2/s, p = 0.1119), in kinetics Ve (0.26 ± 0.15 vs 0.19 ±
0.12, p = 0.2382), AIF delay (5.47 ± 3.69vs 3.75 ± 2.53 s, p = 0.2184), 
and in enhancement A (6.77 ± 5.74 vs 4.09 ± 2.42, p = 0.4418), α (0.03 
± 0.02/s vs 0.02 ± 0.01/s, p = 0.2592) and β (0.007 ± 0.006/s vs 0.006 
± 0.004/s, p = 0.9591). 

Among all these parameters, the highest AUC value was achieved 
with QTM velocity (0.82, 95% confidence level 0.60–0.95) followed by 
Ktrans (0.75, 0.51–0.90). Fig. 6 illustrates their ROCs. No improvement in 
diagnostic accuracy was found by combining |u| and D for QTM (AUC =
0.83, 95% confidence level 0.63–0.95), or combining Ktrans, Ve and t for 
kinetics method (AUC = 0.76, 0.51–0.91), or combining A, α and β for 
ECC (AUC = 0.63, 0.39–0.82) using logistic regression. 

4. Discussion 

Our results demonstrate that the inversion of the transport equation 
or quantitative transport mapping (QTM) is feasible for automated 
processing of DCE-MRI as applied in breast cancer diagnosis. For per-
formance in differentiating benign from malignant tumors, QTM was 
compared with two traditional methods of breast DCE-MRI post-
processing methods: traditional kinetics method and enhancement 
curve characteristics (ECC). Using biopsy pathology as reference stan-
dard, QTM was found to has the highest accuracy (AUC = 0.82), fol-
lowed by kinetics method (AUC = 0.75) and then ECC (AUC = 0.63). 

Fig. 3. Comparison of QTM method and kinetics method on a benign lesion. This is a 45 years old patient with biopsy proven malignant lesion. a) post-Gd T1 
weighted image, b) QTM |u| map, c) Ktrans and d) Ve map using internal mammary artery AIF. 
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The accuracy and automation of QTM suggest that QTM has the po-
tential to improve quantitative perfusion postprocessing of DEC-MRI in 
clinical practice. 

The better diagnostic performance of QTM over traditional kinetics 
method and ECC may be explained by the use of spatial deconvolution in 
QTM. While all three methods share temporal deconvolution (Eqs. 2, 4 
and 6), there is no spatial deconvolution in kinetics method or ECC. QTM 
uses the spatial divergence of mass flux to model an effective local flow 
into and out of a voxel, which performs like an effective local AIF. 
Furthermore, the QTM method using the spatial divergence reflects 

spatial features inside tumor and parenchymal enhancement in neigh-
boring tissue that are helpful for tumor classification [25,26]. Therefore, 
QTM overcomes the problematic use of global AIF in kinetics method. 
Our clinical data suggests that the velocity output from spatial decon-
volution is sensitive to the angiogenic difference between benign and 
malignant tumors. A voxel-specific AIF delay fitting (Eq. 4) was per-
formed in this study, generating Ktrans and Ve in the range of values re-
ported in previous studies [27,28]; yet the use of a global AIF profile 
form suffers from errors associated with dispersion associated with 
multiplicate arterial supplies to tissue in a voxel. 

Another important feature of QTM is full automation in post-
processing DCE MRI data. This adds important practical clinical value. 
Conventional kinetics method typically requires a manual input for an 
arterial region, which renders the output user dependent. There have 
been many attempts to automate kinetics method for processing DCE- 
MRI, including the use of a population-averaged 2-parameter AIF [29] 
and a blinded estimate of an AIF at each voxel using an 11-parameter 
model [4]. The population averaged AIF is problematic in clinical ap-
plications [10]. The blind deconvolution is yet to be translated into 
clinical practice, and the AIF distribution in an image volume cannot be 
fully characterized by 11 parameters in the presence of disease [3,7]. 
Automated AIF is still being developed using various computer vision 
methods [30–32] but represents an extra processing step. Currently, AIF 
selection remains a hurdle for kinetics method, and clinical practices 
employ descriptive measures instead [14,15]. 

Tissue perfusion modeling fundamentally requires detailed micro-
vasculature and otherwise is difficult to formulate and validate [20]. 
Eqs. 1 for QTM and Eq. 3 for kinetics method should be regarded as 
hypothetical equations expressing linear relationships of tracer voxel 

Fig. 4. a) and b) AIF, tumor ROI enhancement curves and fitted enhancement curve for the case in Figs. 2. c) and d) AIF, tumor ROI enhancement curves and fitted 
enhancement curve for the case in Figs. 3. 

Table 2 
Diagnostic accuracy of QTM velocity, kinetic modeling parameters and semi- 
quantitative parameters in distinguishing between benign and malignant 
breast lesions. 95% confidence level is shown in brackets. The first two columns 
are the mean value and standard deviation of malignant and benign lesions.  

Parameter Malignant Benign AUC p- value 

|u| 0.45 ± 0.15 0.29 ± 0.11 0.82 (0.60–0.95) 0.0066 
D 0.30 ± 0.12 0.21 ± 0.09 0.69 (0.44–0.87) 0.1119 

Ktrans 1.18 ± 0.49 0.74 ± 0.36 0.75(0.51–0.90) 0.0274 
Ve 0.26 ± 0.15 0.19 ± 0.12 0.64(0.40–0.83) 0.2382 
τ 5.47 ± 3.69 3.75 ± 2.53 0.65 (0.40–0.84) 0.2184 
A 6.77 ± 5.74 4.09 ± 2.42 0.59(0.33–0.80) 0.4418 
α 0.03 ± 0.02 0.02 ± 0.01 0.63(0.42–0.83) 0.2592 
β 0.007 ± 0.006 0.006 ± 0.005 0.51 (0.27–0.74) 0.9591 

|u|: QTM velocity magnitude in mm/s, D: QTM diffusion coefficient in mm2/s. 
Ktrans: kinetic blood flow in 1/min. Ve: kinetic EES volume fraction. τ: AIF delay 
time in s. A: enhancement amplitude, α: wash-in rate in 1/s, and β: wash-out rate 
in 1/s. 
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concentration in space and time, as they cannot be readily derived from 
basic laws of physics. Eq. 3 for kinetics method is a symbolical extension 
from the original use of the Fick principle of mass conservation between 
blood input and output to an organ [1] to tomographic perfusion with 
the inherent difficulty of an unmeasurable AIF at each voxel [3]. Simi-
larly, Eq. 1 is also a symbolical extension from the continuity equation of 
transport equation in continuous space to the voxel level tracer propa-
gation using symbolic mass flux of convection velocity and diffusion 
[16,33,34]. The symbolical quantities, velocity u(r) and diffusion D(r) in 
Eq. 1 and flow Ktrans(r) and volume Ve(r) in Eq. 3, have now readily- 

defined physical meanings and need to be justified according to the 
physics law of fluid mechanics and tissue microvasculature details in a 
voxel. When the microvasculature is porous as in certain tumors [35] or 
tree-like in renal tissue [36], Eq. 1 can be validated by integrating the 
solution to the continuous transport equations of both mass and mo-
mentum fluxes over the detailed microvasculature in each voxel and the 
velocity u represents an average fluid velocity in a voxel [19,37,38]. Of 
course, the fluid mechanics validation is straightforward for voxels 
containing only blood, as explored in x-ray angiographic video [39] and 
in optical video [40], or for interpreting the velocities (averaged over 
imaging time) of cardiac chambers in this study. To our knowledge, Eq. 
3 for kinetics method has never been validated according to the 
continuous transport equation of fluid mechanics and tissue microvas-
culature. Breast tumor microvasculature in a mouse xenograft is avail-
able for computational blood flow predictions [41], which may be 
extended to human breast tumor to validate Eqs. 1 and 3 in a future 
investigation [42]. 

Instead of validating Eq. 1 for QTM and Eq. 3 for kinetics method 
according to the fundamental transport equation of fluid mechanics and 
tissue microvasculature, clinical applications can be used to justify the 
use of these equations in modeling DCE-MRI. In fact, DCE-MRI literature 
is largely based on using pathology-proven tumor malignancy to justify 
the use of Eq. 3 in kinetics method [43,44] and Eq. 5 for ECC [45]. 
Accordingly, pathology from biopsy was used in this study. The results 
show that QTM is more accurate than kinetics method and ECC for 
differentiating malignant from benign tumors in breast DCE-MRI. 

The inversion of linear Eq. 1 is determined by the condition of its 
system matrix, which is poor and requires denoising regularization in 
postprocessing noisy DCE-MRI data [20]. The diffusion term in Eq. 1 
seems unimportant for DCE-MRI postprocessing, which requires further 
investigation. The lack of accuracy improvement by logistic regression 
of combining parameters may be because of a small sample size and the 
correlation among parameters. 

This preliminary work on QTM has several other limitations to be 

Fig. 5. Differentiating malignant breast lesions from benign breast lesions. a) QTM |u| (p = 0.0066), b) Ktrans (p = 0.0274) demonstrating significance difference 
between malignant and benign lesions. There were no other parameters demonstrating significant difference between malignant and benign lesions. 

Fig. 6. Receiver operating characteristic curve (ROC) for |u|, Ktrans, Ve and A in 
differentiating malignant and benign lesions. 
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addressed in future work. 1) The whole voxel is treated as a single 
compartment. A multi-compartment model can be employed to resolve 
velocities and kinetics in vessel and other compartments [16]. 2) Nu-
merical simulations with detailed vasculature model [42] and compu-
tational fluid dynamics and imaging experiments in 3D printed 
phantoms with known ground truth should be developed to validate all 
perfusion quantification methods including QTM and kinetics method. 
This would require future efforts to improve upon recent attempts with 
simple sphere or tubes in simulation and experiments [46,47]. 3) There 
may be motion during DCE MRI acquisition, and navigator method may 
be used for motion compensation [48–51]. 4) Gd concentration was 
approximated as relative signal enhancement, which may contain er-
rors. These errors can be corrected using quantitative susceptibility 
mapping [52,53], which can provide accurate estimation Gd concen-
tration [54–56]. 5) The temporal resolution was 15 s per timeframe, 
which is the current clinical standard [24] but may be limiting for 
evaluating time derivatives for QTM and traditional kinetics, for 
defining AIF in traditional kinetic methods, for estimating parameters in 
semi quantitative method. Fast imaging can improve the temporal res-
olution [57]. However, intravenous injection with cardiopulmonary 
mixing may fundamentally smooth tracer concentration temporal vari-
ation to 10s scale. 6) Only 5 data points were acquired for each subject. 
More data points may improve the robustness of inversion process for 
QTM and traditional kinetics, and it may also benefit the parameter 
estimation in semi-quantitative methods [27,58]. Overcoming these 
limitations has the potential to further improve the accuracy of QTM 
method and make QTM useful for other clinical situations. 

In summary, QTM with spacetime deconvolution is feasible for 
determining a velocity from time resolved imaging of tracer transport in 
tissue. The QTM method automatically generates a velocity vector map 
from DCE-MRI data, without requiring an AIF. Compared to traditional 
kinetics method and enhancement curve characteristics, QTM velocity 
had higher diagnostic accuracy in distinguishing benign from malignant 
breast lesions. 
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