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KEY POINTS

� The use of dynamic PET and the radiotracer 11C-Butanol for the quantification of cerebrospinal fluid
(CSF) and interstitial fluid flow is introduced.

� PET estimated CSF clearance from brain, ventricle, and nasal turbinates, is reduced in aging, Alz-
heimer’s, and in the presence of amyloid.

� An anatomic validation of PET as a dynamic CSF biomarker is proposed.
INTRODUCTION located aquaporin-4 protein.8–10 Diurnal regulation

Neurofluid Pathways in the Brain

Fluid homeostasis and hydrodynamics in the brain
are critical for maintaining its structural and meta-
bolic health.1,2 The term neurofluids, which refers
to cerebrospinal fluid (CSF) and interstitial fluid
(ISF), describes fluids that are largely derived from
blood and to a lesser extent, from the brain itself.3

In summary, ventricular CSF is produced through
blood filtration and modification at the choroid
plexus. Driven largely by the pulsatile cardiac
cycle,4 the CSF then flows through the cerebral
ventricular system, communicating with subarach-
noid spaces (SAS). These fluids enter arterial
perivascular spaces (PVS) and are distributed
throughout the central nerve system (CNS),moving
into extracellular and extravascular spaces as ISF.5

The movement of these neurofluids facilitates mo-
lecular communication within the brain and adds
in CSF and blood clearance, carrying away meta-
bolic and protein waste.6,7
.c
om
Glymphatic System as a Pathway for
Neurofluids

The recently termed glymphatic system refers to a
newly recognized network of pathways in the
brain that facilitates efficient fluid exchange be-
tween CSF and ISF through the astrocyte foot
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and similar technologies.
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of this function is appreciated, and sleep disrup-
tions have been demonstrated to influence glym-
phatic function and brain health.11,12 Moreover,
decreased glymphatic clearance has been re-
ported in animal models of alzheimer’s disease
(AD) and other brain disorders such as Parkinson’s
disease, traumatic brain injury, amyotrophic lateral
sclerosis, possibly contributing to disease-specific
protein accumulations.13 In AD, beta-amyloid (Ab)
plaques accumulate with increasing age and ge-
netic risks,8,14–16 and in sporadic AD, even in the
absence of excess protein production.17 Such ob-
servations underscore the importance of quanti-
fying neurofluids and understanding their
dynamic interactions. Recent imaging studies,
including the MR imaging contributions found in
this edition as well as our reports, have empha-
sized the potential of multimodal glymphatic clear-
ance evaluations.18–25

PET Technology

The most common application of the PET tech-
nique involves using a radiolabeled receptor ligand,
typically introduced into the peripheral venous
system. The tracer circulates to the arterial tree
and reaches the target organ and binds to a spe-
cific site for duration sufficient to estimate
radioactivity-based receptor occupancy. The
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Abbreviations

ASL arterial spin labeling
AUC area under curve
Ab beta-amyloid
BCSF blood-CSF
ChP choroid plexus
CNS central nerve system
CSF cerebrospinal fluid
DR drain rate
ECS extracellular space
Gd Gadolinium
IR influx ratio
ISF interstitial fluid
LV lateral ventricle
NFT neurofibrillary tangle
NL normal
PVS perivascular spaces
SAS subarachnoid spaces
TAC time-activity curve
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binding location is imaged using a dual photon
coincidence camera, which records positron-
electron annihilation events, marked by the release
of 2 photons whose time of flight to the coincident
detectors is included in the reconstruction pro-
cess.26 Historically, quantitative PET imaging posi-
tron emitters followed the autoradiographic 14C-
deoxyglucose modeling approach by Sokolov27

and gamma camera evolution.28 Clinical PET
studies began in the late 1970s with 18F-
Fludeoxyglucose (18F-FDG)29 and L-Dopa,30 using
1 cm single-slice cameras with a 1.5 cm full-width
at half-maximum resolution and 10-20 min count
uptake periods.31–34 This technology has evolved
to include hundreds of developed PET ligands,
allowing for whole-brain and whole-body imaging
at 2-4 mm spatial resolution with 2 to 10 second
time sampling.35–37

PET as a Molecular Imaging Method for
Alzheimer’s Disease

PET has been pivotal in diagnosing AD by using
various tracers to target distinct pathologic
features.38 The initial PET tracer used was 18F-
FDG, and in collaboration with the Brookhaven
National Lab, de Leon and colleagues first re-
ported decreased glucose metabolism in AD in
the context of limited 18F-FDG uptake reductions
in normal aging brain.39,40 Subsequent longitudinal
studies demonstrated progressive reduction in
18F-FDG PET in the hippocampal formation and
helped identify normal aging individuals at risk
for cognitive decline.41 However, translating these
research observations into clinical practice relied
on imaging anatomic patterns of hypometabo-
lism.42 The increased availability of cyclotrons for
PET radiotracer synthesis and improved camera
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technology facilitated the development of diag-
nostic imaging based on reduced activity in the
parietal and temporal lobes and hippocam-
pus.43,44 These regional observations were further
supported by postmortem studies showing exten-
sive regional tau pathology and neuronal loss.45,46

This convergence of findings led to Food and Drug
Administration (FDA) approval of FDG-PET for the
differential diagnosis between AD and frontotem-
poral dementia.47,48

Alzheimer’s Specific PET Tracers

A major advance was the introduction of AD-
specific PET based molecular imaging techniques
first demonstrated with 2-(1-{6-[(2-[fluorine-18]flu-
oroethyl)(methyl)amino]-2-naphthyl}-ethylidene)
malononitrile (18F-FDDNP) capturing both amyloid
plaques and neurofibrillary tangle (NFT),49 and
soon after Pittsburgh compound B (11C-PiB) PET
with greater molecular specificity for Ab.50–52

Today several amyloid tracers are FDA approved
including 18F-Florbetapir,16 18F-Flutemetamol,53

and 18F-Florbetaben,54 to visualize Ab plaques.
Also, there is 1 FDA approved NFT or tau PET
tracer (18F-Flortaucipir,55 and additional tau
tracers are in testing 18F-MK-6240,56 and 18F-PI-
2620,57 and other tracers.)

PET Tracers for Other Binding Sites Implicated
in Neurodegenerative Pathologies

Additionally, other PET radioligands have been
developed that offer descriptive views of AD-
related pathology. These include tracers for
neuroinflammation, such as (1-[2-chlorophenyl]-N-
methyl-N-[1-methyl-propyl]-3-isoquinoline carbox-
amide) (11C-PK-11195) and N-((2-(methoxy-11C)-
phenyl)methyl)-N-(6-phenoxy-3-pyridinyl)acetamide
(11C-PBR-28) for activated microgla,58,59 (2-(4,5-
Dihydro-1H-imidazol-2-yl)-1-[11C]methyl-1H-indole /
2-(4,5-Dihydro-1H-imidazol-2-yl)-1-methyl-1H-indole)
(11C-BU-99008) for astrocytes,60 an aquaporin
PET tracer 2-nicotinamido-1,3,4-thiadiazole (18F-
TGN-020),61 and an alpha-synuclein tracer 18F-
ACI-12589.62 The reader is referred to more thor-
ough reviews on AD diagnostic PET imaging.63–65

Overall, PET tracers have significantly improved the
early AD diagnosis, expanded the in vivo pathology
characterization, contributed to screening and eval-
uating subjects for therapeutic AD trials, and the
longitudinal staging of AD progression.66,67

Rationale PET Tracers for Cerebrospinal fluid/
Interstitial fluid Imaging

MR imaging has relied on both exogenous intrathe-
cally administered Gadolinium (Gd), which takes
hours to reach the brain from the lumbar spine and
uel J Wood Library from ClinicalKey.com by Elsevier on 
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sequences relying on endogenous contrast (water),
but which are limited to capturing a few seconds of
tracer mobility, Intrathecal Gd is well known as a
high value MR contrast agent probing brain dam-
age.68 Experimentally it has been shown useful in
mapping CSF pathways. Gd is a hydrophobic
agent, and in normal brain it does not readily cross
fromCSF tobrainor fromCSF toblood69; thesebar-
riers are referred to as the blood-brain-barrier and
blood-CSF (BCSF) barriers. Thus, the Gd approach
althoughuseful for characterizingCSFanatomyand
tissue integrity, is not ideal to capture kinetics of
fluid exchanges across compartments. For the
endogenous contrast MR imaging, sequences
such as arterial spin labeling (ASL) are designed to
capture brain blood perfusion by tagging the water
in blood to introduce an endogenous contrast22,70;
the signal decays very fast at the rate 1/T1b, with
T1b the T1 relaxation time of blood,making it difficult
to infer information about the communication with
the ISF.71–74

Given these limitations, de Leon and colleagues
proposed a role for PET imaging with the intrave-
nous (IV) administration of freely diffusible,
nonbinding, and rapidly clearing tracers labeled
with relatively long half-lives (20–110 min) to track
the transfer across brain compartments. At the
time of this writing, PET, ASL, and Gd approaches
have demonstrated value in characterizing as-
pects of CSF clearance; however there are no
head-to-head comparisons available.

Aims of this Review

In this review, we will focus on emerging dynamic
PET approaches to imaging neurofluids in AD and
preclinical AD. We will review studies targeting
CSF and ISF dynamics in regions known to be
associated with CSF flow and presumably the
glymphatic system. These exploratory imaging
studies have begun to reveal quantitative regional
relationships between neurofluid tracer clearance,
the AD diagnosis, aging, and amyloid deposition.

DYNAMIC PET IMAGING OF NEUROFLUIDS

PET studies have employed 2 classes of radio-
tracers to examine neurofluids. In the first
publications,75,76 18F-tau tracers were used to es-
timate ventricular CSF clearance. This class of
tracer was selected by taking into consideration
the limited brain density distributions of tau lesions
in aging as compared with Ab lesions, and there-
fore were considered to be less confounding (loss
of signal to lesion uptake). In these early studies,
90 min dynamic tau PET data with (6-[(3-[18F]flu-
oro-2-hydroxy)propoxy]-2-(4-methylaminophenyl)
quinoline) (11C-THK-5117) and 1-(Fluoro-18F)-
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3-((2-(6-(Methylamino)-3-Pyridinyl)-6-Quinolinyl)
oxy) (18F-THK-5351) were acquired and sampled
the lateral ventricle (LV), and built slope and AUC
based models to quantify the tracer influx and
clearance through CSF compartments. Later an
amyloid tracer was reported to estimate ventricular
CSF clearance.24 In the second class of study, 11C-
Butanol, a freely diffusible, lipophilic tracer with tis-
sue permeability similar to water and a 20min½ life
that did not bind to brain or AD lesions was repur-
posed from a cerebral blood flow (CBF) agent to a
CSF clearance biomarker by expanding observa-
tion time windows.77 11C-Butanol studies enabled
direct examination of CSF and brain when blood
tracer concentrations were low and asymptotic.

PET Imaging of Neurofluids

In principle, with the intravenous (IV) injection of a
bolus of a small molecular weight, freely diffusible,
and lipophilic molecule, the anatomic fate of the la-
bel can be followed. It is well known that IV deliv-
ered tracers pass through the lung and heart to
enter the brain via the arterial blood. This blood car-
rying the tracer irrigates the entire brain, a portion of
which is converted to CSF, and ultimately all tracer
activity is cleared (Fig. 1). As such, the PET camera
is used to estimate an optimal temporal viewing
window for both the influx and the rapidly diminish-
ing tracer concentrations in arterial blood as con-
trasted with the slower and delayed time courses
for tracer distribution and clearance in CSF, brain,
and venous compartments. See Fig. 2 highlighting
arterial and venous timing and Fig. 3 for ventricular
tracer uptake and clearance.

Conventional PET Modeling

The PET community has applied multiple modeling
approaches toexamine tracerdynamics in thebrain,
which includes time-activity curve (TAC) based
modeling,75,76 the graphic analysis (Logan plot,78

Patlak plot79,80), and compartmental kinetic PET
modeling.81 These conventional models are mostly
used for both tracer uptake and steady state blood
flow, andhave beendeveloped to estimate the rates
of metabolism, membrane permeability, blood flow,
etc.81–83 However, there is no consensus for
modeling tracer egress to estimate the CSF clear-
ance in the brain. Recently, several novel models
were proposed to evaluate the neurofluids move-
ment in the brain using dynamic PET.24,25,75,76,84

Emerging Modeling of Cerebrospinal Fluid
Dynamic

Ventricular space as clearance target
The brain ventricular system includes left and right
LVs, and third and fourth ventricles, which are all
ine Samuel J Wood Library from ClinicalKey.com by Elsevier on 
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Fig. 1. Dynamic 11C-Butanol PET image frames. Six frames from (A) to (F) are for 20s, 40s, 1 min, 3 min, 10 min, and
1 hour post IV tracer injection, respectively. The frames illustrate how the signal is enhanced and decreased in the
brain depending on time. With the passage of time the tracer is cleared from the arterial vasculature, and it enters
and mixes with other compartments, including the SAS, neural tissue and ISF, ChP, PVS, and drainage via lymphatic
and venous outflow. (Source Mehta NH, Sherbansky J, Kamer AR, et al. The Brain-Nose Interface: A Potential Cere-
brospinal Fluid Clearance Site in Humans. Front Physiol. 2022;12. https://doi.org/10.3389/fphys.2021.769948.)
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filled with CSF. The choroid plexus (ChP) located in
the ventricles, widely considered as the main
source of CSF, is also recognized as a site
absorbing a fraction of CSF.85 Driven by cardiac
based vascular pulsations and brain compli-
ance,4,9 the ventricular CSF irrigates the brain and
flushes metabolic waste from the ISF.86 As the
CSF pool in the LVs is the largest in the brain, it
was selected in the early studies to investigate
brain tracer clearance. In these nongated studies,
(estimated) cardiac cycles of approximately 1 sec-
ondwere averaged over 10s to generate TAC using
the relatively low spatial resolution (4 mm) PET im-
aging. Importantly, the PET tracers used had no LV
ChP binding, providing an opportunity to map the
CSF clearance using dynamic PET. Fig. 3 shows
an example of PET data TAC in LV and blood.

Extracranial cerebrospinal fluid clearance in
relation to ventricular clearance
The use of dynamic PET to examine LV CSF clear-
ance was first reported by de Leon and Li, and col-
leagues in 2017.75 In that study, the tau PET tracer
18F-THK-5117 was used to estimate the CSF clear-
ance by measuring the area under curve (AUC) be-
tween 35 and 80 minutes post tracer injection
(AUC35-80min). The 35–80 min interval was selected
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to avoid contamination of the signal from blood,
which was observed to reach asymptotic levels at
about 4 min and to examine CSF clearance after
any tracer binding to tau lesions was completed.
This study reported that lateral ventricle CSF clear-
ance for both the slope and the AUC35-80min were
reduced in AD (P<.01) compared with healthy
normal (NL). When considering the rate of change
of the ventricle, AUC normalized by the cerebellar
AUC, the relative clearance was reduced by 33%,
(P<.01) in AD. Further, the magnitude of the
decreased LV CSF clearance demonstrated a
strong relationship to an increased Ab deposition
as determined by 11C-PiB PET (r 5 0.74, P<.05).
In a replication of de Leon and colleagues’ 2017

paper, Schubert and colleagues, 201924 examined
CSF clearance in AD and control using 11C-PiB
PET with a 2-compartment model. They designed a
PETkineticmodel to quantify ventricular tracer clear-
ance by including modeling compartments for gray
matter, blood, and a ventricular bound pool. The re-
sults in this study were consistent with the prior
vCSF work showing significantly decreased ventric-
ular CSF clearance in AD as compared with
NL.24,75,76

While multiple non-human mammals studies
have demonstrated a robust clearance pathway
uel J Wood Library from ClinicalKey.com by Elsevier on 
ission. Copyright ©2025. Elsevier Inc. All rights reserved.

https://doi.org/10.3389/fphys.2021.769948


Fig. 2. An example showing the 11C-Butanol PET signal enhancement in carotid artery and internal jugular vein
by time. (A) shows at 10 seconds post tracer injection, the arterial signal (red arrow) and (B) the vein signal (or-
ange arrow). At 10 seconds, the carotid artery is enhanced while there is no significant signal in internal jugular
veins. (C) and (D) At 50 seconds post tracer injection, the arterial signal is decreased in (C) compared with (A) and
the internal jugular vein signal (D) is increased as compared with (B). (Courtesy – de Leon MJ, Li Y, Zhou L.)
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spanning from the subarachnoid space to cribri-
form plate and to nasal turbinates,87,88 this anatomy
is poorly understood in human. The de Leon, and
colleagues 2017 study also tested a suspected
nasal turbinate CSF clearance route in human.
Nasal turbinate clearance was reported and repli-
cated using 11C-cocaine PET. Of considerable in-
terest, examination of the nasal tracer signals in
the 18F-THK-5117 study also showed an AD asso-
ciated clearance reduction. Fig. 4 shows the nasal
and extracranial distribution of CSF correlated vox-
els. Fig. 5 shows that all AD and control subjects
have CSF-positive voxels in the superior turbinate
which are reduced in AD. Fig. 6 demonstrates the
nasal turbinate signal using 11C-cocaine PET data
in healthy young subjects.

In a second LV CSF report from the same
research team, Li and de Leon, and colleagues
extended the numbers of impaired subjects and
redefined the ventricular CSF clearance rate
(vCSF) defined by the TAC slope between 10-
and 30-min post injection divided by the whole
brain AUC in the first 4 mins.76 The normalization
of TAC slope by the whole brain tracer input
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improved the robustness of vCSF as a diagnostic
tool.75,76 This revised definition of vCSF, normal-
izing for early blood flow effects and variations to-
tal tracer influx, provided a more robust estimation
of CSF clearance as compared to the earlier met-
rics. Fig. 7 shows the vCSF in association with am-
yloid lesions and in the classification of impaired
subjects.

In a third set of studies from our group, Zhou, and
colleagues 2023 developed a multimodal imaging
assessment to characterize the CSF clearance
anatomy.20 These data showed that for Ab positive
subjects, a combination of the MR imaging based
diffusion tensor image analysisalong the perivascu-
lar spaces (DTI-ALPS) and 18F-MK-6240 PET
based vCSF improves the association with 11C-
PiB PET Ab deposition (P<.05, R2 5 0.575).20 The
combination is superior to either modality alone
(vCSF: P<.05, R2 5 0.431; ALPS: P<.05, R2 5
0.372). Of considerable interest, this study also re-
ported that PET vCSF (n 5 24, P<.05, r 5 �0.548)
is more sensitive thanMR imaging DTI-ALPS. Over-
all, these observations, provided initial evidence
that the description of the brain CSF clearance
ine Samuel J Wood Library from ClinicalKey.com by Elsevier on 
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Fig. 3. An example of TAC of1 18F-THK5351 PET tracer in LV of human brain. (A) shows the TAC in both carotid
artery and LV (B) shows the decreasing PET tracer concentration in LV from 1 min to 1 hour post injection. The
ventricular tracer inflow is mainly driven by blood flow and choroid plexus function, while the ventricular tracer
outflow is multifactorial, and includes: ventricular system flow, choroid plexus and venous drainage, and intra-
cranial pressures. (Source Li Y, Rusinek H, Butler T, et al. Decreased CSF clearance and increased brain amyloid
in Alzheimer’s disease. Fluids Barriers CNS. 2022;19(1):21. https://doi.org/10.1186/s12987-022-00318-y.76)
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could be enhanced using both PET and MR imag-
ing and thus a potential for multiple modality imag-
ing of CSF dynamics in understanding the
pathology of AD.

Butanol imaging of the nasal space as an
extracranial cerebrospinal fluid pathway
While 11C-Butanol was previously used as blood
flow imaging agent,77,90,91 we repurposed the
tracer to serve as a CSF/ISF biomarker.92 The
idea behind the use of Butanol was to map without
tissue binding, the temporal course of the tracer
input and clearance from the carotid artery to the
brain, ventricular, interstitial and cranial nerves,
and ultimate passage to venous and jugular clear-
ance. Butanol, with performance and permeability
similar to labeled water 15O-H2O, is also a tracer
without a binding site.77 However, because of its
relatively long 20 min versus 2 min half-life, 11C-
Butanol enables improved compartmental imaging
of tracer transit.77,90,93

Unlike the ventricular CSF pool, a relatively ho-
mogeneous target for imaging, nasal CSF passes
from brain via the cribriform plate along olfactory
nerves to clear via venous and lymphatic vessels
in a complicated nasal structure. Recently, Mehta
and de Leon and colleagues, 2024 used 11C-
Butanol to examine the tracer clearance through
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the brain and nasal anatomy.92 In this study, a
new tracer clearance metric t75% was defined to
estimate the time to clear 75% of tracer entering
the region of interest between 0 to 60 min post
tracer injection. A shorter t75% value indicates a
faster speed for tracer clearance. It reported the
t75% from the lateral orbitofrontal cortex (LOF)
and an anatomic sample combining superior, mid-
dle, and inferior turbinates (All-turbinates) were
positively and selectively associated, suggesting
a connection between the brain and the nose.
Further, the Ab1 subgroup demonstrated impaired
tracer kinetics in both regions, marked by reduced
tracer influx (0–4min) and slower egress (4–60min)
measured by t75%. The egress deficit is most
readily seen in the nasal compartment (Fig. 8). It
supported the interpretation that for the Ab1sub-
group, impaired tracer egress from brain contrib-
utes in part to reduced turbinate tracer influx. It
also raised the possibility that amyloid also impacts
the tracer influx to brain.
Emerging Modeling of Extracellular Fluid
Dynamic

Extracellular space structure
The extracellular space (ECS) refers to the space
outside the cells that is filled with ISF containing
uel J Wood Library from ClinicalKey.com by Elsevier on 
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Fig. 4. Extracranial distribution of CSF TAC correlated voxels. Sagittal (A) and axial (B) MR images from a represen-
tative NL show 3-dimensional extracranial shell region in blue and total nasal cavity in yellow and red. (C) Percent-
age distribution (�SEM) (n 5 5 subjects) of shell and nasal cavity voxels whose tau PET derived TAC are correlated
with ventricular CSF TAC, within range of r 5 0.90 to 0.99, n 5 5. Data show in red a 3-fold-greater percentage of
CSF-correlated voxels in nasal cavity than in total shell. (This research was originally published in JNM. de LeonMJ,
Li Y, Okamura N, et al. Cerebrospinal Fluid Clearance in Alzheimer DiseaseMeasuredwith Dynamic PET. J NuclMed.
2017;58(9):1471-1476. https://doi.org/10.2967/jnumed.116.187211. � SNMMI.)
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various metabolites, ions, proteins, lipids, cyto-
kines and chemokines, and other biomolecules in
an extracellular matrix affecting cellular function.
The early Ab plaque pathology of AD is found in
the ECS and arterial smooth muscle cells.94 The
change of the molecular contents and concentra-
tions in the extracellular space are believed to be
affected by the fluid dynamics in this space. For
instance, it has been reported that the ECS
enlargement during sleep could enhance the brain
ISF clearance.11

Extracellular fluid as a key component of
glymphatic system
The extracellular fluid includes both interstitial fluid
and CSF in PVS. The movement of ISF in the ECS
is generally considered as diffusion dependent,
whereas CSF in PVS is reported as having a faster
movement speed than ISF but slower than the
blood flow in adjacent vessels. The ECS volume
is about 30w45% of total tissue volume measured
by DTI based Free Water in which there is about
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3w6% of PVS measured by MR T2-relaxation
based CSF fraction.21,95,96 The fluid exchange be-
tween ISF and CSF in PVS is considered as the
main mechanism of glymphatic function to clear
brain metabolites. Therefore, the study of extracel-
lular fluid dynamic is critical to understand the
glymphatic function in the brain parenchymal. Dy-
namic PET could play a significant role in esti-
mating the ISF fluid dynamic in ECS.

In 2022, Suzuki and colleagues examined inter-
stitial flow dynamics using 15O-H2O PET.25 They
designed a model with 2 parameters by fitting the
TAC curve in LV and GM to 1-exponential with an
additional constant. The ratio of fitted constant in
LV and gray matter was defined as influx ratio (IR)
and the fitted decay rate in GM was defined as
the drain rate (DR). Their results showed that NL
subjects had no significant change in IR and DR af-
ter 2 years (IR: 1.03 � 0.21 and 1.02 � 0.20, DR:
1.74 � 0.43 and 1.67 � 0.47, respectively), but
3 Ab1 subjects had decreased DR (IR: 0.60 �
0.15 and 0.60 � 0.13, DR: 1.24 � 0.12 and 1.11 �
ine Samuel J Wood Library from ClinicalKey.com by Elsevier on 
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Fig. 5. MidsagittalMR imagewith superimposed PET data from all subjects. CSF-positive voxels falling into a superior
turbinate regionof interest (ROI), consistentwith red colored region in Fig. 4A. (This researchwas originally published
in JNM.deLeonMJ,LiY,OkamuraN, et al. Cerebrospinal FluidClearance inAlzheimerDiseaseMeasuredwithDynamic
PET. J Nucl Med. 2017;58(9):1471-1476. https://doi.org/10.2967/jnumed.116.187211. � SNMMI.)
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0.10). These data further suggested that progres-
sive BCSF barrier function disturbances could be
related to Ab measures.
In 2024, Suzuki, and colleagues performed a

normal aging and AD study using the same 15O-
H2O PET tracer and model. The results showed
that interstitial fluid flow decreased with age, espe-
cially after 50 year old.84 They also showed that
both IR and DR for elderly NL (age: 65–79, IR:
1.04 � 0.17, DR: 1.45 � 0.39) were lower than
young NL (age: 35–49, IR: 1.33 � 0.08, DR: 1.92
� 0.09) and higher than that for AD (age 59–84,
IR; 0.74 � 0.09, DR; 0.86 � 0.17), implying a
decreased influx ratio and interstitial fluid drainage
for elderly and AD. A significant negative linear
correlation was observed between age and the 2
indices (IR: R2 5 0.54 and DR: R2 5 0.44). These
results are in agreement with a published normal
aging findings reported above using 11C-Butanol
tracer influx and clearance from brain.92 Although
both 15O-H2O and 11C-Butanol have no noticeable
tissue binding, they have very different half-lives,
2 min versus 20 min. This leads to scan acquisition
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time differences and different shaped TAC curves,
resulting in different input and clearance esti-
mates. Nevertheless, at this time it is encouraging
that similar general input and egress features
related to brain amyloid are observed.
DISCUSSION

The production and clearance of brain proteins,
and production and clearance of brain fluids has
gained increasing attention following the amyloid
hypothesis from Hardy and Selkoe that proposed
the accumulation of Ab as failed protein clearance
in the absence of increased production.2,97,98 With
demonstration of a failing glymphatic clearance in
animal AD models associated with increased Ab
deposition,8,17 human CSF clearance studies
were introduced. It’s more than 20 years since
the amyloid hypothesis was proposed and
12 years since the glymphatic system hypothesis
in AD was proposed.8,98 The glymphatic system
includes the network of PVS facilitating fluid ex-
changes between SAS, CSF, and the ISF from
uel J Wood Library from ClinicalKey.com by Elsevier on 
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Fig. 6. Nasal turbinate signal using 11C-cocaine PET data in normal young subjects. Voxels whose LV CSF correla-
tions exceeded r 5 0.95 were considered CSF positive and are mapped in red below. Within the blue shell region,
a nasal cavity region was defined in yellow. As observed with the 18F-THK-5117 tau tracer, the highest density of
presumed CSF positive sites is in the superior and middle turbinate regions.75,89 This was obtained over 40 min
following IV injection of 6 to 8 mCi of 11C-cocaine. Superior and middle turbinate regions provided the highest
density of CSF-correlated voxels. (Source Supplementary materials of : de Leon MJ, Li Y, Okamura N, et al.
Cerebrospinal Fluid Clearance in Alzheimer Disease Measured with Dynamic PET. J Nucl Med. 2017;58(9):1471-
1476. https://doi.org/10.2967/jnumed.116.187211.)

Fig. 7. The performance of vCSF of its association with amyloid deposition and across tracers’ consistency. (A) The
vCSF-SLOPETHK5351 is inversely correlated with the extent of fibrillar Ab as estimated by 11C-PiB gray matter bind-
ing (r5� 0.64, P<.01, n5 24). The correlation remains significantwhen restricted to theADgroup (r5� 0.58, P<.05,
n5 15). NL: (black); AD: (red). (B) Cross-tracer agreement of clearance: the vCSF-SLOPE for 11C-PiB and 18F-THK5351
PET tracers are highly correlated (r5 0.66, n5 24, P<.01). (This researchwasoriginally published in JNM.de LeonMJ,
Li Y, Okamura N, et al. Cerebrospinal Fluid Clearance in Alzheimer DiseaseMeasuredwith Dynamic PET. J NuclMed.
2017;58(9):1471-1476. https://doi.org/10.2967/jnumed.116.187211. � SNMMI.)
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Fig. 8. PET Butanol Influx and Egress in Lateral Orbitofrontal Cortex and All-turbinates. The effect of brain amyloid
positivity on PET Butanol (SUV) influx and egress for both the LOF (A–C) and All-turbinates (D–F). The regional influx
TAC from 0 to 5 min is seen in (A, D) and for the egress the TAC 5 to 60 min (B, E). (A, B) Using a Repeated Measures
Two-2 ANOVA, the LOF influx showed a Ab subgroup trend (F(1,22) 5 3.16, P 5 .0892), and LOF egress showed a
main effect of Ab subgroup (F(1,22) 5 4.641, P 5 .0424) and Ab subgroup by time interaction (F(329, 7238) 5 4.964,
P<.0001). (D, E). For the influx to the All-turbinates, there was a main effect of Ab subgroup and Ab subgroup by
time interaction: (F(1,22) 5 10.24, P 5 .0041 and F(30,660) 5 2.975, P<.0001, respectively) and for the egress from
the All-turbinates: (F(1,22) 5 11.36, P 5 .0028 and F(329, 7238) 5 11.67, P<.0001, respectively). To assess the relative
contributions of influx on egress within LOF and All-turbinates, the egress AUC was normalized by influx AUC (C, F).
Mann-Whitney assessment of the normalized egress showed for the All-turbinates a significantly higher tracer ratio
in Ab1subjects. Ab-individuals are displayed in black, and Ab1 in red. Error bars represent the standard error of the
mean on each time frame. FDR corrected significant differences at specific timepoints are denoted by significant Ab
subgroup related influx or egress effects (P>.05). (SourceMehta NH, Wang X, Keil SA, et al. [1-11C]-Butanol Positron
Emission Tomography reveals an impaired brain to nasal turbinates pathway in aging amyloid positive subjects.
Fluids Barriers CNS. 2024;21(1):30. https://doi.org/10.1186/s12987-024-00530-y.)
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the ECS. The study of microscale fluid exchange
using human imaging modalities with large voxel
sizes is on the one hand challenging, but on the
other the expanded field of view beyond small win-
dows offering microscopic level detection appears
to offer some advantages.
The imaging of neurofluids using PET is an

emerging research topic. As summarized above,
both CSF and ISF in the brain have recently been
studied using PET radiotracers as CSF surrogates.
However, the number of published studies remains
small and the anatomic and clinical features exam-
ined limited. Additional PET imaging studies are
needed to evaluate the CSF and ISF dynamics
from various brain sites considering both age and
disease. Overall, the data consistently demonstrate
CSF clearance reductions associated with age and
possibly additional influx deficits associated with
Downloaded for Anonymous User (n/a) at Weill Cornell Medicine Sam
February 24, 2025. For personal use only. No other uses without perm
amyloid lesions. At present, several anatomic CSF
pathways includingbrain, ventricle, andolfactory re-
gions have been examined using PET, and interest-
ingly, both tracer inputandegressdeficits havebeen
shown for amyloid positive tissues suggesting a
further characterization of tissue properties such
as their permeability to tracers.
The Relationship Between Brain and Nasal
Turbinate Kinetics

The introduction of PET and PET tracers like 11C-
Butanol and 15O-H2O PET offers a novel tool for
in-vivo assessment of fluid clearance dynamics
through the brain, nasal turbinates, carotid artery,
internal jugular vein, and other sites. Where earlier
studies depended on ventricular sampling and tau
and amyloid tracers, both confounded by brain
uel J Wood Library from ClinicalKey.com by Elsevier on 
ission. Copyright ©2025. Elsevier Inc. All rights reserved.
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Fig. 9. An intrathecal Gd (left) based validation of 11C-Butanol PET (right) CSF/ISF regions (blue). The PET CSF im-
age was defined as the slowest CSF clearance rate by selecting the 1st quartile from the 5 to 15 mins TAC slope.5 It
highlights the CSF distributions for 2 subjects: (A) the intrathecal injection of Gd contrast and (B) the 11C-Butanol
PET distribution defined as the slowest CSF clearance derived from the 1st quartile of the 5 to 15 mins TAC slope.
From the images in (A), we observe many consistencies between the enhanced CSF signal following intrathecal
injection of Gd contrast with the slowest quartile CSF slopes in areas marked as blue mask in (B). (Source Agarwal
N, Lewis LD, Hirschler L, et al. Current Understanding of the Anatomy, Physiology, and Magnetic Resonance Im-
aging of Neurofluids: Update From the 2022 “ISMRM Imaging Neurofluids Study group” Workshop in Rome. J
Magn Reson Imaging. 2024;59(2):431-449. https://doi.org/10.1002/jmri.28759).
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binding, 11C-Butanol and 15O-H2O PET have
demonstrated value in this space. Both tracers
have low molecular weights, are freely diffusible,
and do not bind in brain.91,99 Distinguishing these
tracers, 11C-Butanol has a longer 20 min versus
2 min half-life.

Prior work has revealed the metabolic fate and
modeling of A1-Butanol in clinical applications us-
ing 11C-Butanol as a blood flow agent sampling
brain for approximately 5 min.90,93 Capitalizing on
these biophysical properties, the tracer concentra-
tion and kinetics between arterial and venous
blood, brain, and nasal turbinates for 60 min was
investigated. The results showed significant con-
centration and time-dependent changes. All the
emerging modeling approaches included in the re-
view, including vCSF, t75%, input, and clearance
and tracers used are in general agreement. Caution
is advised when applying tracers with either spe-
cific or non-specific binding properties, such as
the 18F-MK-6240 binds to tau and to bone, either
of which could impact the results.
Validation of Neurofluids Quantification

The validation of human neurofluid quantification is
both complex and in its infancy. Validation studies
areneeded forCSFand ISFdistributionscomparing
PET imaging with the intrathecal injection of Gd
measured by dynamic contrast enhancement.5,23

Examples of this using 11C-Butanol are shown in
Downloaded for Anonymous User (n/a) at Weill Cornell Medic
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Figs. 9 and10. Furthermore, validations are needed
using longitudinal clinical analyses, subject chal-
lenge protocols, diverse disease populations, and
animal models.

Future Considerations

As summarized above, most PET quantification
modeling to date used ROI-based calculations.
This approach has been useful for diagnostic signal
changes between subject groups. However, the
value could be improvedwhen considering the early
detection of pathologic change on an individual ba-
sis. One next step will be to extend the analyses to
the voxel level to improve characterization of patho-
logic and functional changes. We also envision
extending the CSF mapping to other cranial nerves,
lymphatic structures, and to veins. Further, the
modeling of fluid exchanges between tissue com-
partments and their interactions could be improved.
As such, future directions will no doubt explore the
regional and voxel level interactions between CBF,
CSF, and ISF dynamics in a search for early identifi-
able features of future clinical risk. Finally, diverse
animal models will be helpful to validate the interac-
tion between fluid compartments and provide
ground truth of the fluid dynamics in the brain.

SUMMARY

In summary, PET CSF dynamic imaging comple-
ments MR imaging based dynamic CSF imaging
ine Samuel J Wood Library from ClinicalKey.com by Elsevier on 
t permission. Copyright ©2025. Elsevier Inc. All rights reserved.
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Fig. 10. An example of the 1st quartile slowest tracer clearance regiondefinedby the slope of PET TACduring 5min
to 15min post tracer injection of 11C-Butanol tracer. (A) and (C) are the sagittal and axial view of the same brain. (B)
and (D) show the same views with dynamic 11C-Butanol PET defined slowest clearance region mask overlayed. This
depicts another anatomic validation example from the 11C-Butanol PET data. Within subject and for the whole
brain, the slowest 1st quartile slope maps the sulcal and ventricular CSF but not a faster clearing ISF. (Courtesy de
Leon MJ, Li Y, Zhou L.)

amyloid lesions are closely related. Such ob-
servations may improve sensitivity for the
diagnosis and progression of AD and assist
in developing and monitoring therapeutic in-
terventions.

Zhou et al12
approaches. PET with a low-radiation dose and IV
administration provides quantitative opportunities
in imaging brain neurofluids. This includes whole
brain (and body) coverage, tissue clearance and
permeability measurements, high contrast sensi-
tivity, and tracer half-lives permitting repeat exam-
inations. In less than a decade, PET tracers have
demonstrated a role for functional PET mapping
of neurofluids, contributing to AD diagnoses, and
revealing correlations with related brain pathology.
The future is encouraging for expanded tissue
mapping, longitudinal treatment evaluations, and
mechanistic validation approaches.
CLINICS CARE POINTS
� The recent experimental studies of neuro-
fluid quantification using PET imaging re-
ported in this review were designed to
improve the understandings of CSF clearance
in aging and AD. These data support the view
that CSF clearance and the formation of
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